Comment on transport processes on fractal structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171937
(http://iopscience.iop.org/0305-4470/17/9/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:46

Please note that terms and conditions apply.

## COMMENT

# Comment on transport processes on fractal structures 

James A Given and Benoit B Mandelbrot<br>IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, USA

Received 25 November 1983


#### Abstract

The scaling exponents for the 'depleted Sierpinski gasket' derived by Havlin and Ben-Avraham are shown to differ sharply from those derived by the method of Given and Mandelbrot. The discrepancy is analysed and it is shown that the argument used by Havlin and Ben-Avraham is incorrect.


A recent paper, Havlin and Ben-Avraham (1983), to be referred to as HBA, derives the scaling exponents for a certain fractal lattice one may call 'depleted Sierpinski gasket' (figure 2) whose lattice approximants converge asymptotically to the full Sierpinski gasket (figure 1), but have lower symmetry. However, by applying to the same lattice the methods used in Given and Mandelbrot (1983), to be referred to as GM, one obtains sharply different exponents. This comment analyses the discrepancy, and shows that the argument used by HBA is incorrect. It assumes that in this depleted lattice, the scaling behaviour is attained immediately, whereas in fact it is only attained asymptotically and extremely slowly. This error deserves exploration because it touches upon a conceptual point, and risks being repeated in other contexts.


Figure 1. Second lattice approximant to the full Sierpinski gasket.


Figure 2. Second lattice approximant to a depleted Sierpinski gasket.

Although real-space methods are available for the same class of problems (Given and Mandelbrot 1984), the method best suited to showing universality is found in the fractal analogue to the momentum-space renormalisation group of Wilson et al as described in GM. In the language of GM, any two fractal lattices with the same 'tie generating scheme' have the same conductivity and diffusing scaling behaviour. Thus, for the lattice of figure $1, \rho=\frac{5}{3}$ and $\alpha=5$, where $\rho$ is the asymptotic ratio of resistances measured at successive stages of iteration, that is

$$
\rho=\lim _{n \rightarrow \infty}\left(R_{n+1} / R_{n}\right)=\lim _{n \rightarrow \infty}\left(\bar{R}_{n+1} / \bar{R}_{n}\right) .
$$

On the other hand, hbA claims $\rho=\frac{7}{4}$ and $\alpha=\frac{21}{4}$.
Since the lattices in figures 1 and 2 have only three external contact points, each can be modelled to any order of decoration via star-triangle transform by a triangle with two effective resistors: $R$ between either A and B or A and C , and $\bar{R}$ between B and C . Furthermore, let $R^{\prime}$ (resp. $R^{\prime \prime}$ ) denote the two point resistances between either A and B or A and C (resp., B and C ). The renormalisation group for these quantities has a single stable fixed point, satisfying $\lim _{n \rightarrow \infty}\left(\bar{R}_{n} / R_{n}\right)=1$. The full Sierpinski gasket (figure 1) satisfies $\left(\bar{R}_{1} / R_{1}\right)=1$, which means that it attains scaling behaviour immediately. The same is true of all the full Sierpinski gaskets irrespective of their base. The conductivity calculation by HBA tacitly assumes that this simple scaling behaviour also applies to other lattices, but this is not so. In fact, the depleted Sierpinski gasket in figure 2 clearly satisfies $\left(\bar{R}_{1} / R_{1}\right)=\infty$, and in this sense is the most slowly convergent member of its universality class. The values 1 and $\frac{7}{4}$ are those of the two-point resistance $R^{\prime}$ for the first and second iteration of the renormalisation

Table 1. Ratio of successive values of $R, \bar{R}, R^{\prime}$ and $R^{\prime \prime}$, as obtained by iterating the renormalisation group of Given and Mandelbrot (1983).

| Stages | $R$ | $\bar{R}$ | $R^{\prime}$ | $R^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| $2 / 1$ | 2.000000 | 0 | 1.750000 | 1.500000 |
| $3 / 2$ | 1.875000 | 1.000000 | 1.730769 | 1.538462 |
| $4 / 3$ | 1.807692 | 1.292801 | 1.716216 | 1.567568 |
| $5 / 4$ | 1.766820 | 1.426029 | 1.705174 | 1.589653 |
| $6 / 5$ | 1.740065 | 1.500176 | 1.696743 | 1.606514 |
| $7 / 6$ | 1.721640 | 1.546410 | 1.690262 | 1.619476 |
| $8 / 7$ | 1.708487 | 1.577358 | 1.685246 | 1.629508 |
| $9 / 8$ | 1.698850 | 1.599074 | 1.681341 | 1.637317 |
| $10 / 9$ | 1.691647 | 1.614819 | 1.678286 | 1.643428 |
| $11 / 10$ | 1.686184 | 1.626507 | 1.675886 | 1.648229 |
| $12 / 11$ | 1.681993 | 1.635332 | 1.673993 | 1.652014 |
| $13 / 12$ | 1.678750 | 1.642084 | 1.672497 | 1.655006 |
| $14 / 13$ | 1.676221 | 1.647299 | 1.671311 | 1.657378 |
| $15 / 14$ | 1.674240 | 1.651359 | 1.670369 | 1.659261 |
| $16 / 15$ | 1.672682 | 1.654536 | 1.669621 | 1.660758 |
| $17 / 16$ | 1.671451 | 1.657036 | 1.669025 | 1.661950 |
| $18 / 17$ | 1.670476 | 1.659008 | 1.668550 | 1.662900 |
| $19 / 18$ | 1.669703 | 1.660569 | 1.668171 | 1.663658 |
| $20 / 19$ | 1.669089 | 1.661807 | 1.667869 | 1.664262 |
| $21 / 20$ | 1.668600 | 1.662791 | 1.667628 | 1.664745 |
| $22 / 21$ | 1.668210 | 1.663573 | 1.667435 | 1.665130 |

group. However, as mentioned, these values fail to yield its scaling behaviour. Table 1 shows that even after six iterations, the ratio of successive values of $R$ is 1.740065 , which is barely below $\frac{7}{4}$. The asymptotic value is not approached until the 20th generation. Thus, it is not surprising that the moderately large MC simulation reported in HBA should have yielded a poor value for $\rho$ and hence should have seemed to confirm their incorrect analysis. Table 2 confirms that the renormalisation used to obtain table 1 is exact.

Table 2. Exact values of $R, \bar{R}, R^{\prime}$ and $R^{\prime \prime}$, as obtained by using Kirchhoff's laws. The ratios of successive lines in table 2 are identical to the values in table 1.

| Stages | $R$ | $\bar{R}$ | $R^{\prime}$ | $R^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | $\infty$ | 1 | 2 |
| 2 | 2 | 12 | $\frac{7}{4}$ | 3 |
| 3 | $\frac{15}{4}$ | 12 | $\frac{315}{104}$ | $\frac{60}{13}$ |
| 4 | $\frac{25085}{3848}$ | $\frac{163560}{10543}$ | $\frac{40095}{7696}$ | $\frac{3480}{481}$ |

## References

Havlin S and Ben-Avraham D 1983 J. Phys. A: Math. Gen. 16 L483-7
Given J A and Mandelbrot B B 1983 J. Phys. A: Math. Gen. 16 L565-9

- 1984 to appear in J. Stat. Phys.

